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A nonlinear, singularity-free, gauge-invariant field theory of leptons is proposed 
which incorporates the electron, muon, and tau. Fitting the known masses leads 
to a lepton radius of the order 10 -16 cm, which is within the experimental range. 
The model considered suggests the possibility of a hierarchy of short-lived lepton 
states. Properties of the electron such as its energy-density distribution, Reissner- 
Nordstr6m repulsion, and the fact that gravitation cannot play a significant role 
in its construction are discussed. All singularity-free charged particle models 
constructed from fields which were investigated approached the limit charge 2= 
mass 2 (in geometrical units) as gravitation became a dominant force. It is 
suggested that this property may have great generality. The interaction-energy 
integrals which bind the particles are seen to increase as the energy increases, 
and it is suggested that a similar mechanism may also be responsible for quark 
confinement in hadrons. 

1. I N T R O D U C T I O N  

The  essen t ia l  goal  o f  this  p a p e r  is to p r o p o s e  a t heo ry  o f  l e p t o n s  w h i c h  

p recedes  D i r a c  theory  a n d  e l ec t roweak  theo ry  in  the  sense  tha t  the  par t ic les  
are c rea ted  f rom m o r e  f u n d a m e n t a l  cons t i tuen t s .  This  is ach ieved  w i t h i n  

the  f r a m e w o r k  o f  a n o n l i n e a r ,  s ingu la r i ty - f ree  field theory .  The  s t ruc tures  
are  de sc r ibed  w i t h i n  a c lass ica l  f r amework ,  wi th  spher ica l  sym m et ry ,  a n d  
it is a s s u m e d  tha t  q u a n t i z a t i o n ,  as in  the  D i r a c  e q u a t i o n ,  w o u l d  gene ra t e  
sp in  a n d  m a g n e t i c  m o m e n t  for  the  par t ic les .  W e  have  b e g u n  wi th  l ep tons  
b e c a u s e  these  are the  k n o w n  " e l e m e n t a r y "  par t ic les  wh ich  can  exist  in  
i so la t ion .  A fu tu re  goal  w o u l d  be  o n e  o f  e x t e n d i n g  the  t heo ry  to q u a r k s  or  
to o the r  cons t ruc t s  w h i c h  migh t  cons t i tu t e  h a d r o n s .  
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The Maxwell equations of classical electromagnetism lead to the 
description of an elementary charged particle as a singularity in the field. 
This presents the problem of an infinite self-energy, and its resolution via 
renormalization is not really satisfactory. Moreover, since the Maxwell 
equations are linear, equations of motion for the charge, as well as for the 
field, are required. As a result, classical electromagnetism is incomplete as 
a field theory. The concepts of particle and motion should be contained 
within the field theory, and not exist as independent entities (Einstein and 
Rosen, 1935). In a complete field theory, the particles and their motions 
(as well as the field dynamics) would be derived from variations of  a 
Lagrangian constructed entirely from fields. 

Early attempts to create an electron from the electromagnetic field 
succeeded only at the expense of "Poincar6 stresses," which provide a 
phenomenological, rather than a fundamental, description of the particle. 
In an attempt to employ fields alone, Einstein (1919) showed that the 
addition of  gravitation via general relativity still failed to create an electron. 
Born and Infeld (1934, 1935) developed an alternative theory of electromag- 
netism to that of Maxwell, which incorporated only the Maxwell tensor F ~  
in the Lagrangian, thus maintaining gauge invariance. While they were able 
to model particles, this work and later refinements (Hoffmann and Infeld, 
1937) failed to eliminate singularities. It was recognized that the vector 
potential A~ would have to appear explicitly in the Lagrangian to avert 
singularities. Such theories had been developed by Mie (1912, 1913) and 
others; while they were singularity-free, they were not gauge invariant. 

Rosen (1939) (see Section 2) combined a scalar field with the elec- 
tromagnetic field, thus maintaining gauge invariance. While this theory 
successfully modeled a charged particle without singularities, no particle 
of positive mass was found. Later, Rosen and Rosenstock (1952) showed 
that neutral particles of  positive mass can be formed from a single scalar 
field and that the particle states are quantized (Section 2). It is natural to 
consider the addition of electromagnetism, and perhaps gravitation as well, 
to model elementary charged particles. In this manner one can determine 
the minimal modifications which will retain the simplicity and gauge invari- 
ance of  Rosen (1939) in forming a charged particle entirely from fields 
while averting the problem of negative mass. It should be remarked that 
our present knowledge of the participation of the electron in weak-interac- 
tion processes lends further plausibility to the idea of describing it with the 
addition of  a field other than electromagnetism and gravitation. 

A variety of structures which have been considered by the present 
authors are described in this paper, and finally models which fit the known 
leptons well are presented. This in turn leads to a hierarchy of  possible 
short-lived higher-mass lepton states. It is of interest that the experimentally 
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determined lepton masses, in conjunction with our theory, lead to charac- 
teristic sizes for the leptons of the order 10 -16 cm, which is within the present 
experimental limit. 

In the course of the investigations, the role of gravitation was studied. 
First, it is easily seen that for the known charge and mass of an electron, 
gravitation is significant in the range ~<10 -33 c m .  However, every charged 
particle state which the authors were able to construct with gravitation 
playing a significant role led to a structure where the charge was of the 
order of or less than the mass in geometrical units, whereas e / m  ~ 1021 for 
an electron. If this result has general validity, then it suggests that the 
electron radius has a lower bound which is well above 10 -33 cm, for otherwise 
particle states would exist with gravitation playing a significant role while 
e / m  has this enormous value. 

A variety of models was investigated in the limit as gravitation became 
a dominant force with the gravitational-field gradients reaching very large 
magnitudes. Of considerable interest is the fact that in every case the exterior 
Reissner-NordstrSm metric revealed that e 2 ~  m 2, coming ever closer to 
equality as the model parameters were chosen to increase further the 
gravitational field intensities. In other words, the metric which is approached 
is never one with a so-called black-hole event horizon. This result could 
have important implications. 

The paper is organized in the following manner. In Section 2 we review 
earlier theory, which forms the foundation of our present theory. The 
simplest gauge-invariant singularity-free particle model with negative mass 
(Rosen, 1939) is outlined, and new numerical data concerning the nature 
of the possible particle solutions are presented. The uncharged scalar-field 
model with quantized positive-mass particle states (Rosen and Rosenstock, 
1952), which also plays a role in our new theory, is briefly reviewed. 

In Section 3 the essential data concerning leptons are recalled. Argu- 
ments in favor of a finite size for leptons are given, and upper and lower 
bounds to their sizes are established, using experimental data and consider- 
ations involving gravitation. The picture of  an electron as having a negative- 
energy inner core surrounded by a positive-mass outer layer, which emerges 
from the Reissner-Nordstr6m metric in conjunction with the known values 
of electron mass and charge, is discussed. This leads to the conclusion that 
the Reissner-Nordstr6m repulsion phenomenon (Papapetrou, 1974) is real- 
ized in an electron. The simplest conceivable models which might encompass 
the known lepton properties are also discussed briefly and are shown to be 
inadequate. 

In Section 4 a successful theory incorporating three scalai" fields is 
developed. Models of particles with quantized excitation states, which fit 
the known leptons well, are presented, and the energies of possible lepton 
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states of higher excitation are given. The mechanism of confinement (which 
might also describe quark confinement in hadrons) is discussed. 

The role of gravitation is developed in Section 5. The simplest particle 
model within the present framework is analyzed, and a detailed example 
is given. The result, that e 2= m 2 a s  the effect of gravitation becomes 
dominant, is described, and it is noted that this appears to have a consider- 
able generality. The reasons for concluding that gravitation does not play 
a significant role in the structure of elementary particles with which we are 
familiar are given. 

A concluding discussion of perspectives on the particle problem is 
presented in Section 6. 

2. FOUNDATIONS 

To avoid singularities in a theory constructed from the electromagnetic 
field, the four-vector potential A~ as well as the Maxwell tensor F ~  must 
appear in the Lagrangian. This raises the problem of maintaining gauge 
invariance, i.e., the invariance of the theory under a gauge transformation 

! _ _  A~ ~ A~ - A~ + a,~, where a is an arbitrary function of x u and a comma 
denotes a partial derivative. This problem is solved (Rosen, 1939) by 
introducing a complex scalar field ~0 which, under a gauge transformation 
for A~, simultaneously undergoes a local phase transformation (rotation) 
~b ~ ~b'= qJe i~a (e = real constant). Then, in addition to the simple scalar qJ~ 
(bar = complex conjugate), one can introduce derivatives of ~0 which main- 
tain gauge invariance provided they appear in the form D~q,, D~, =- O r - ieA~,. 
This is because Dumb ~ D~ q /=  i~a e Du~0 under the local phase transformation 
above, and hence quantities such as ( D ~ q ~ ) ( D ~ t p )  are both scalars and gauge 
invariant. In present-day parlance, D~ is referred to as the "gauge-covariant 
derivative" (Quigg, 1983) and it arises in quantum mechanics as the operator 
which maintains invariance under local phase rotations. 

In Rosen (1939) the simplest scalars F ~ v F  ~v, ( D U q J ) ( D j J ) ,  and ~04~ 
were combined to form the Lagrangian 

L = - F . , . F ' * ~ / 8 r r  - ( D ~ q . , ) ( D ~ . ~ +  o-2q,~ (or = real constant) (2.1) 

which, after variation with respect to A~ and ~, respectively, yield the field 
equations 

F.~,f = - 4 ~ j  ~* 

j ~  = ( 1 / 2 ) i e [  fD~*q., - qt (D~*qj)] 

(D v~b);~ - i e A v (  DUq* ) + r = 0 

(2.2) 

(2.3) 

(2.4) 
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where  a semicolon  denotes  the usual  covar iant  derivative.  Thus,  the elec- 
t romagne t ic  and scalar  fields, via the nonlineari t ies  o f  the theory,  create 
their  own current  sources J "  for  a comple te  se l f -contained field theory.  

The e n e r g y - m o m e n t u m  tensor  is 

r . ~  = (1 /167r ) (g~F~t3F  ~t3 - 4 F ~ F ~  ) 

+ (1 /2) [g ,~  {(D'~b) ( D ~  ,) - tr2~bf} 

- D . O ( D ~ )  - (D.0)(D~O)] (2.5) 

The e lec t romagnet ic  par t  o f  Too is posit ive semidefinite,  while the r emainder  
(the "ma t t e r  par t " )  is negat ive semidefinite.  

For  solut ions in which the charge is static and spherical ly symmetr ic ,  
one can choose  a gauge for  which the four-vec tor  potent ia l  is 

A ~ = ~o(r), A k = 0, k = 1, 2, 3 (2.6) 

The four-current  is 

J ~  J k = 0  

and the scalar  field is mos t  general ly  expressed  in the form 

---- O ( r ) e  -i~Izt (2.7) 

where 0 is a real funct ion of  r , /z is a real constant ,  and r =  (X2q-y2"k-Z2) 1/2. 

In terms of  these quanti t ies,  the field equat ions  (2.2)-(2.4) are 

v20 + [ ,2(~  + Ix)2_ ,~q 0 = 0 (2.8) 

V2g~ + 47rp = 0 (2.9) 

/3 =82(~+IX)02 

with b o u n d a r y  condi t ions  d O ~ d r =  d ~ / d r  = 0 at r =  0 for  regulari ty at the 
origin, 0 + 0 exponent ia l ly  as r + az for  part iclel ike structure,  and ~o - c o n s t / r  
as r ~ ~ for  asympto t ic  C o u l o m b  behav io r  o f  the electrostat ic field. 

The equat ions  are easiest  to examine  in te rms o f  d imensionless  var iables  
x, y, z via the subst i tut ions 

0 = o 'y / (47r) l /2e ,  ~ + tx = t r z / e ,  r = x /o"  (2.10) 

in terms of  which they are 

d 2 ( x y ) /  dx  2 = x ( 1 - z2)y,  

The total charge is 

e = 4 7 r  pr2 d r = a / e ,  

d 2 ( x z ) / d x  2 = - x y 2 z  (2.11) 

O~ ~ y2ZX2 d x  (2.12) 
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and the energy density is 

Too = ( 1 / 8 w ) (  d~ / dr) 2 -  (1/2)e2(q~ +/x)202 

- (1~2)(dO~dr) 2 -  (1/2)o-202 (2.13) 

After an integration by parts, the total energy W = 47r So Too r2 dr can be 
expressed as 

W = - o ' w / 2 e  z (2.14) 

where 

w = a/3 + y, /3 = elx/o',  y = y2z2x2 dx  (2.15) 

It is most straightforward to integrate the equations from x = 0 by 
prescribing either y(0) = a or z(0) = b and solving for the other in such a 
manner  as to make y ~  0 exponentially as x~oo .  It then follows that z 
approaches o~/x +/3 asymptotically, as required in the Coulomb limit, with 
/32< 1, and one can thereby determine a and/3. With the solution known, 
integrations determine a (again) and 3' and hence the energy of the particle 
(in addition to the charge, found from a)  for a given parameter  pair o- and 
e which appear  in the Lagrangian. 

To resolve the question of choice of  solution, it was noted (Rosen, 
1939; Menius and Rosen, 1942) that a local minimum for the energy exists 
in the neighborhood of  the solution determined by the parameters a = 1.63, 
b = 2.21493, but the energy itself was negative, with the value of w approxi- 
mately 2.83. 

This system of equations has now been studied more thoroughly. It 
was found that for values of  a up to approximately 3.55, particlelike 
solutions exist with w ~< 2.83. A gap then occurs in the range 3.55 ~< a ~ 3.62, 
where /32> 1 and the solutions are oscillatory and hence do not represent 
particles. In the range 3.62 ~< a ~ 8.4, a new set of  particle states is found 
with 12.7 ~< w ~< 13.9. With further increase of  a, a second set of  oscillatory 
solutions occurs, followed by a third regime of  particle states with w - 32. 
Apparently this process continues indefinitely. However, there is no indica- 
tion that any solution exists where the electromagnetic part  of  the energy 
density ever dominates over the "mat ter"  part to render w negative and 
hence the total energy W positive. 

The case of  a scalar field without any electromagnetism was treated 
with the help of  the Lagrangian (Rosen and Rosenstock, 1952) 

L = (0"~0)(0~,r - o-2 qjq~ + (1/2)g~02q~2 (g > 0) (2.16) 

This differs from that of  (2.1) (with A ~" = 0) in that a quartic term has been 
added, and the signs of  the first two terms have been changed. In the static, 
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spherically symmetric case, with q, = O(r)ei'% the field equation obtained 
from (2.16) has the form 

d20/ dr2 + (2/ r )  dO~dr - oz20 + gO 3 = 0 (2.17) 

and it has particlelike solutions of  the asymptotic form 0 =Ae-'~r/(g)'~/2r, 
where A = c o n s t  and a Z = o ' 2 - - t o 2 > 0 .  The energy density in this case is 
found to be 

Too = o)202+ 0 ,2 -  (l12)gO 4 ( ' =  d/dr )  (2.18) 

which is again indefinite for g > 0. However, an integration by parts making 
use of  (2.17) yields a positive-definite total energy 

W = 4~r [2w202+ (1/2)gO4]r 2 dr (2.19) 

The particlelike solutions are quantized, and the ground-state (nodeless) 
solution, as well as the first-excited-state (one node) solution, were plotted 
in Rosen and Rosenstock (1952). 

3. LEPTON PROPERTIES  AND M O D E L  CONSIDERATIONS 

At this point, we briefly review the properties of  leptons. The known 
leptons, apart  from the (supposedly) massless neutrinos, are the electron 
(e), the muon (/~), and the tau (~-). The electron is a stable (mean lifetime 
>5• years), sp in- l /2  fermion with mass me of 0.511MeV. In 
geometrical units, which we shall use in this paper,  the electron mass is 
6.77 x 10 -56 cm, and the charge is 1.38 x 10 -34 cm. It does not exhibit struc- 
ture at the current limit of  resolution, - 1 0  -16 cm (Quigg, 1983). The muon, 
which is also a sp in- l /2  fermion, has a mass of  206.77 me and a mean 
lifetime of 2.197 • 10 -6 sec. Its pr imary  decay mode (98.6%) is into e -  + ~e + 
v~ (Okun, 1982). Both the electron and muon are observed directly, whereas 
the more recently discovered tau is deduced through its decay products. 
The tau has a mass of  approximately 3491.6 me and is also a sp in - l /2  
fermion. It has decay modes into muon and neutrinos, electron and 
neutrinos, and hadrons plus neutrals (Okun, 1982). The g-factors of  the 
electron and muon are very close to 2 as expected for Dirac particles, and 
this is sometimes cited as support  for their identification as "poin t"  particles 
(Quigg, 1983). 

A "point ,"  which is a singularity, is incompatible with a proper  field 
theory. Consequently, we begin with the assumption that the leptons which 
are to be described are constructed from fields in a nonlinear manner  and 
have finite size. In what follows, we will show that lepton structure does 
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not negate the notion of their being "elementary" particles. From high- 
energy scattering experiments, it appears that the upper limit to the particle 
size is ~10-16cm. We arrive at a lower limit from a consideration of 
gravitation. For any given positive mass, it would be expected that there 
would exist a size for the corresponding particle at which level gravitation 
would play an important role in its structure. Assuming that the electron 
is a static, spherically-symmetric structure, the authors have found that in 
every attempted model constructed for it in which gravitation plays a 
significant role, the ratio e / m  found for it was of the order unity or less. 
Moreover, as gravitation became a dominant force with the gravitational 
field gradients approaching enormous magnitudes, the ratio e l m  

approached 1 in every case. We suggest that this property may have great 
generality. The metric is approaching that of the "critically-charged" 
(Cooperstock and De La Cruz, 1979) Reissner-Nordstr6m particle, with 
metric 

d s  2 = (1 - m ~  r)  2 d t  2 - (1 - m ~  r) -2 d r  2 - r 2 dl"~ 2 

(3.1) 
df~2_- - dO2-k- sin20 ddp 2 

and m 2= e 2. However, e / m  is approximately 2.04• 1021 for the electron, 
which is very far from unity. This suggests that elementary particles such 
as the electron are not concentrated to such a small dimension that gravita- 
tion plays an important role. Typically, the radius of a particle with the 
known mass and charge of an electron would be - 1 0  -33 cm at the stage at 
which gravitation would play an important role [see (3.2) below]. But if it 
is a general property that gravitation plays an important role only for e 2 ~ m 2 

elementary particles, then we deduce a lower limit for the electron radius 
at a value appreciably above 1 0  - 3 3  c m .  

The metric (3.1) has interesting properties. It stands at the junction 
between those Reissner-Nordstr6m metrics which are said to exhibit "naked 
singularities" and those supposedly "clothed with a horizon." It is also the 
metric which is approached by the charged Curzon particle as it sheds its 
higher multipoles in the limit as it approaches the critically charged state 
(Cooperstock and De La Cruz, 1979). 

Assuming that the electron, however small, is not a point, we can 
deduce other interesting aspects of its composition and character from the 
associated metric, in spite of the fact that gravitation plays a negligible role 
in its structure. From the 0-0 component of the external metric, as given 
by the Reissner-Nordstr/Sm solution 

go0 = 1 - 2 m e / r + e 2 / r  2 =  1 - 2 ( m e - e 2 / 2 r ) r  (3.2) 

the mass that is concentrated within a sphere of radius r is (Cooperstock 
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and De La Cruz, 1978) 

m e f f  = m e  - e 2 / 2 r  (3.3) 

Even at the largest possible electron radius of - 1 0  -16 cm, reef f is negative, 
reaching zero at r -  10 -13 cm, from where it builds up its net positive value, 
achieving 99% of its total value m e  at r -  10 -11 cm. Thus, a good electron 
model should exhibit a negative-energy core. From the gravitational point 
of view, an electron would exhibit the phenomenon of Reissner-Nordstr6m 
repulsion (Papapetrou, 1974) in the electrovacuum region between its core 
outer boundary and r - 10 -13 cm. Thus, we have an actual physical example 
of this unusual effect embodied in the electron. However, the gravitational 
force is too weak to be of importance for particles which we know of in 
nature that could be used as probes at present. 

To build an electron, the simplest model which suggests itself is to add 
charge to the Lagrangian of Rosen and Rosenstock (1952) [equation (2.16)]. 
The original uncharged particle formed from (2.16) has a negative-energy 
core and a positive total mass [equation (2.19)]. Moreover, its field equation 
(2.17) yields quantized particle solutions for successive excitation states. It 
is natural to envision that quantized excitation states, which occur in the 
atomic and nuclear domains, should carry over to the level of fundamental 
particles. Indeed, experimental observations of the decays of very short-lived 
resonance states and decays of long-lived particles such as muons lend 
support to such a picture. Also, this provides a pathway to the construction 
of the observed particles in nature from fewer fundamental constituents, 
which has been the perennial goal of theoretical physics. Thus, in the case 
of leptons, the ground state is seen as the stable electron, with the muon, 
tau, etc., being represented by excited states. Decays from excited levels to 
the electron ground state with the emission of (supposedly) zero-rest-mass 
neutrinos would fit in well with analogous processes in atomic and nuclear 
physics. 

The ground state for this model of charge added to (2.16) was investi- 
gated by numerical integration. The largest ~, which is the reciprocal of the 
scale length (and hence of the order of the particle size), was found to be 
of order 1012 cm -1. However, experimentally, a minimum o- of the order of 
1015 cm -1 is required for the electron. Thus, this simplest model yields an 
electron which is too large; its radius is of the order of the classical electron 
radius. 

At the next level of  complexity, we considered a field theory incorpo- 
rating both the original scalar qJ with electromagnetism of (2.1), which gave 
a negative-energy particle, coupled to the scalar of (2.16) (now called 4'1 ), 
previously unassociated with electromagnetism, and having positive energy. 
The simplest form of coupling to give a gauge-invariant contribution to the 
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Lagrangian is f000101 where f is a coupling constant. The Lagrangian thus 
has ~he form 

L = -F;~vF"~/8  ~r + 0'u010/~lffl - o~ ~1 "~- (1/2)g0~t~ 2 
(3.4) 

- (D'~O)(D,~O) + o20(,-f00010~ 

With the proper  choice of  parameters, it is possible to create an electron 
model with 00's even well in excess of  10 ~ cm -1 if desired, and hence of 
minute dimensions. However,  if the goal is more ambitious, namely to have 
the next excited state of  01 represent the muon with the same set of  
parameters,  then it is found that over a wide range of coupling strengths, 
00 is consistently in the range (2-4) x 1014 cm -1, which is too small. Further- 
more, regardless of  the coupling, no single set of  parameters could be found 
which also encompasses the second excited state of  01 with the correct mass 
to represent the tau. 

However, this model has two attractive features which will be useful 
in what follows. First, the coupling between the scalars induces a binding- 
energy contribution in the energy integral which grows in absolute magni- 
tude with excitations. This presents us with a mechanism to bind the particle 
constituents together, regardless of  the level of  excitation. Indeed, should 
it be possible to extend the methods discussed in this paper  to describe the 
formation of hadrons from quarks, such a mechanism could possibly realize 
the phenomenon of quark confinement. In the present context, the mechan- 
ism serves an analogous function in that there is no evidence to suggest 
that an electron could ever be decomposed. Moreover, it would be disturbing 
if it could be decomposed within the present framework, since one of the 
freed constituents would have negative mass. Thus, we have the coexistence 
of the concepts of  "elementari ty" and structure with no contradiction. 

Second, the model is attractive in that the negative-energy scalar carries 
the charge, while excitations of  the positive-energy scalar, for reasonable 
values of  the coupling constant, affect the charge only slightly. Hence, it is 
easy to readjust the parameters of the negative-energy scalar so as to 
maintain charge conservation for all the states. 

In the following section, we describe in some detail a more satisfactory 
model for leptons which incorporates these attractive features. 

4. SUCCESSFUL M O D E L S  OF LEPTONS 

In Section 3, we saw that the use of  two scalar fields, one neutral and 
one charged, had some attractive features, but it failed to give a satisfactory 
theory of  leptons. The addition of a third, neutral, scalar field enables us 
to reach this goal. Perhaps future studies will reveal that three fields underlie 
the structure of  leptons, which are sp in- l /2  fermions, in the same sense 
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that three quarks underlie the structure of baryons, which are also spin- l /2  
fermions. 

Thus, we introduce the Lagrangian 

L = - F ~ F ~ / 8 ~  + 0~'013~,~, - 0-201 ~1 + ( 1 / 2 ) g 1 0 ~  + 0~023.t#2 

- o-202472 + (I/2)g2022~22 - (D~)(D~) + ~20~ 

-A 0001~i -A0002 02 (4.1) 

As before, 0 is the complex scalar of the form in (2.1), which is directly 
coupled to the electromagnetic field, 01 and I//2 a r e  scalars of the positive- 
energy form of (2.16), and each of which is coupled to the negative-energy 
scalar (coupling constants f l  and f2). An additional coupling term between 
01 and 02 could have been added. This was not done, partly because a 
successful model is achieved without it, and partly because at this early 
stage in the development of the theory, there is no clear directive to guide 
such an inclusion. 

Variations with respect to 0, 01, 02, and A ~, respectively, yield the set 
of nonlinear coupled field equations 

(D~0); ,  - ieA~(D~O) + ~ - f1001fJ1 - - f 2 0 0 2 ~ 2  ----" 0 (4.2) 

( D ~ 0 1 ) ; ~ + 0 - 2 0 1 - g 1 0 2 ~ l + f l O f 0 1  =0  (4.3) 

( D  ~'02 );u -'l'- 0"202 -- g2022~2 + f 2 0 ~ 0 2  = 0 (4.4) 

F;~ ~ = 4~rJ ~, J~" =- - ( 1 / 2 ) i e ( ~ D ~ O  - 0 D ~ 0 )  (4.5) 

Particularizing to static spherical symmetry as before, we take 01 and 02 
to be real; set 

A ~' = ( r  0, 0, 0), 0 = O(r)e -i~"' 
(4.6) 

01 = 01(r), 02 = 02(r) 

and express the field equations as 

V20 + e20(~p +/~)2 _ 0"20 +f1001 +f200~ = 0 (4.7) 

V201 -- 0"201 + g103 -f10201 -~- 0 (4.8) 

V202- 0"202 + g2032-f20202 = 0 (4.9) 

$72~p + 47re2(~ + lz) 02 = 0 (4.10) 

For the purpose of numerical integration, it is useful to work with the 
dimensionless variables 

x = r0", z = (e/0")(~ +/~), y = e(47r)1/20/o- 
(4.11) 

el = g11/201/0-, Y2 = gl/202/0- 
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in terms of which the field equations are ( '=  d/dx) 

y"+(2/x)y'+z2y-y+(fx/gl)yy~+(f2/g2)yy22=O (4.12) 

y~+(2/x)y'l-yl+y31-(fl/4rre2)y2yl =0 (4.13) 

y~ +(2/x)y'2-Y2+ y3-(f2/4rre2)y2y2=O (4.14) 

z"+(2/x)z'+y2z=O (4.15) 

The charge and mass are 

where 

e =  ce/s (4.16) 

m = crw/2e 2 (4.17) 

w = (2rre2/gl) 4 2 y,x dx+(2rrsi/g2) y4x2 dx 

o io o 
- ( f , / g l )  y2y~x2  a x  - ( A / g 2 )  y2y~x2  a x  - ~ - ~, 

with a, fl, and 7 having the same meanings as in Section 2. 
The first formulation which might come to mind in constructing the 

family of leptons is modeled upon a structure considered in Section 3. This 
is to leave both 0 and one of 01 and 02 always in the ground state and 
represent the electron, muon, and tau, respectively, by the ground, first 
excited, and second excited states of the second positive-energy scalar. 
However, as before, no choice of interaction could be found which could 
give all three known particles. 

Two other formulations, however, are successful. One is to represent 
the electron as the ground state of all three scalars (0, 4'1, 4'2), the muon 
by the first excitation (*) of 4'1, i.e., (4', 4'*, 4'2), and the tau by the first 
excitation of 4'2, i.e., (4', 4',, 4'* ). Such a formulation will lead to the correct 
masses for e, ~, and r. However, the decay modes of r to both ~ and e are 
equally likely (Okun, 1982; Anon, 1986), whereas, with the deexcitation 
of  the tau as expressed above, we are only able to achieve the electron state 
in a natural manner. (Nevertheless, we end this section with a data set for 
this model, should it turn out to be the correct one.) 

An alternative formulation avoids this difficulty. We consider the elec- 
tron, muon, and tau given by (4', 4'1,4,2), (4', 4,1", 4'2), and (4', 4'*, 4,2"), 
respectively. A deexcitation of 4'2 alone takes r into /x, a deexcitation of  
4'1 then takes/x into e, while a deexcitation of (4'*, 4'*) takes r into e. In 
this formulation, we would postulate that in high-energy collisions the muon 
is created by the excitation of 4'1, while very high-energy collisions which 
suffice to excite the 4'2 generally also excite the more weakly coupled 4',; 
hence, the representation of the tau by (4', 4'*, 4'*). In the process of 



Gauge-Invariant Field Theory of Leptons 435 

deexcitation, however, we could have an intermediate state (0, 01 ,0*  ) (with 
energy 3288 me for the parameter set below), which could be related to the 
decay mode of tau into hadrons and neutrals. 

It must be stressed that the solutions found are static, and hence no 
predictions can be made for transition probabilities, which are related to 
dynamics. Even if such solutions could be found, it is far from clear that 
these could successfully replicate the observed dynamical processes in 
nature, because the theory at the present level is not a quantum field theory. 
However, the classical theory is the first step in any event. Also, the history 
of physics has various examples in which quantized reformulations of 
classically constructed theories yield little or no change. 

The results of numerical integration for the parameter set 

f J 4 r r e  2 = 0.0005, f 2 / 4 ~ e  2 = 0.003 

f l / &  = 2.7709 x 10-' ,  f 2 / g 2  = 2.6528 x 10 -3 (4.18) 

(with the first two chosen for convenience and the last two then taken so 
as to give the correct mass ratios) are given in Table I. Here, a, b, c, and d 
are, respectively y(0), z(0), yl(0), and y2(0); the last column represents the 
ratio of the w's for the particle states relative to the w of  the electron ground 
state (We) .  From (4.17), fixed parameters o- and e together with the ratios 
of the w's yield the ratios of the corresponding masses. We note that the 
muon and tau masses found are only 0.06% removed from their observed 
(Anon, 1986) values of 206.77 me and (approximately) 3492 m e  (+6 m e ) for 
the/x and r. 

From equations (4.16) and (4.17), 

tr = 2o~2rne/ wee 2 (4.19) 

and from the known values of a and w of  the ground state (see Table I) 
and the known values of  e and m for the electron, we find that o-, the 
reciprocal of  the scale size, is 6.013 x 10 ~s cm -1. It should be noted that a 
value of  cr corresponds to a particle size of the order of 1/tr (=1.663x 
10 -16 cm in the present case). It is interesting that the value of 1/tr agrees 
with the experimental upper limit for the lepton size and that it is obtained 

Table I. Lepton Parameter Values 

P a b c d ~ ~ y w i w J %  

e 1.6300 2.2112 4.3383 4.3431 1.9051 0.00264 2.8168 4.286x 10 -3 1 
1.6300 2.2112 14.1038 4.3431 1.9051 0.00264 2.8168 0.8869 206.9 

r 1.6243 2.2025 14.1038 14.1049 1.9051 0.00489 2.8077 14.974 3494 
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simply by fitting the parameters to the known masses (and the charge) of  
the leptons. From equation (4.16), e = 1.379x 1034cm -~ and from (4.18), 
f~ = 1.1948 x 1066 c m  -2 ,  f2  = 7.1690 x 1066 cm -2, gl = 4.3120 x 10 70 cm -2 and 
g2 = 2.7024 x 1069 cm -2. 

Until we know the actual values for the coupling parameters fl  and f2 
or, alternatively, the intrinsic binding parameters g~ and g2, we cannot 
predict with precision the other excitation states. In the above solution we 
simply postulated the values of  fJ47re  2 and f2/4"rre 2, taking the second 
value to be larger than the first. This corresponds to stronger binding for 
the ~02 scalar relative to q'l as the excitation of the former creates the tau. 
With this parameter  set, there are states of  higher excitation 

(l~t, 6 * * ,  62),  (I//, I/t~**, 62),  (6,  ~j , (4)  62),  (6,  I/t* ~:, 62 ~ ) 

(6, 6*** 6"), (6, .,~5~ 0,~,~, , tp~ ,62),  (6, 6 " ) ,  etc. 

at the respective energies 703, 1611, 3044, 3990, 4899, 5124 and 6331 times 
me, etc. Presumably, they would be very short-lived. It would be interesting 
to determine whether there is any experimental evidence in heavy-lepton 
searches for short-lived states in the neighborhoods of these energies. 

We now return to the model in which the e,/z, and r are represented, 
respectively, by the states (@, i~tl, 1~2), (~J, O*, ~'r and (6, O~, 0 " ) .  We 
begin with the same fl/4~re 2= 0.0005 and f2/47re 2= 0.003 as in (4.18), but 
now determine new parameter  values f l / g l  =2.6160x 10 -5 and f2/g2 = 
2.6618 x 10 -3 appropriate to forming the leptons with the above structure 
of  excitations. With this parameter  set, the states of  higher excitation 

(~0, 6**, ~2), (6, 6"**, 62), (q~, 6*% 62), (q,, 61", 6*) 

(O, 61 ~ , I//2~), (6, I~t* g~* , 62~)' (6,  6 '  (5) , 62),  (1~, 61 ~(4) , I~t2~), etc. 

occur at the respective energies 702, 1607, 3037, 3691, 4187, 5092, 5111, 
and 6522 times me, etc. Note that what was formerly the tau is now a state 
of  higher excitation and that the former intermediate state (6, O~, 0 " )  has 
now assumed the role of the tau. 

Returning to equation (4.17), we now consider the changes which occur 
as one goes to successively higher excitation states of  Yl and Y2- Since a,/3, 
and 3' are related to the negative-energy scalar y, which does not get excited, 
there is little change in these quantities. Indeed, insofar as a is concerned, 
the start value, a, for y is adjusted so that a is conserved. This has the 
effect of  maintaining charge conservation [see (4.16)] for successive lepton 
states. Since excitation increases y~ and Ya, the essential effect is to increase 
m through the increase in the first two integrals and, to a less pronounced 
degree, decrease rn through the increasing binding given by the third and 
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fourth integrals. Thus, successive excitations have the effect of  increasing 
the binding so that the composite structure is never decomposed. 

An analogous mechanism is conceivable in the case of  quark 
confinement in hadrons. However, one basic difference is that the quarks 
have separated centers and hence the mass integrals could present new 
features. 

5. THE ROLE OF GRAVITATION 

We now consider the effect of  gravitation in charged-particle formation. 
This was done for a variety of  particle models considered by the present 
authors. However, for simplicity of exposition, we focus on the simplest of 
these models. 

In Rosen (1939), in the absence of gravitation, the sign structure of 
the Lagrangian was chosen as in (2.1) because only this form led to field 
equations for which there existed particle solutions, albeit with negative 
mass. Positive-mass particles with no charge were found in Rosen and 
Rosenstock (1952) with the opposite sign structure in the Lagrangian (2.16) 
by the addition of  a binding quartic g term. It is natural to inquire whether 
the Lagrangian of  (2.1) with charge, modified in sign structure to that of 
(2.16) so as to make the energy positive, could yield particle solutions, given 
sufficient gravitational binding. If so, this charged-particle model would 
have gravitation play the role of the g term in (2.16). 

Thus, we consider the Lagrangian 

L = - F ~ F ~ / 8 r r  + (D,g,) ('DUmb) - o-2~b~ (5.1) 

where now the metric is for static, spherically symmetric curved space-time 

ds  2 = e ~ d t  2 _ e ~ dr  2 _ r 2 d f ~  2 
(5.2) 

a = a ( r ) ,  ~= ~(r) 

After the variations are performed and the coordinates are scaled as in 
(2.10), the field equations ( '=  d / d x )  

d 2 ( x y ) /  ds  2 =  x y ( 1  - z 2 e - ~ ) e  ~ + ( x y ' / 2 ) ( X ' -  v ' )  (5.3) 

d 2 ( x z ) /  d x  2 = x y 2 z e  ~ + ( x z ' / 2 ) ( X '  + v ')  (5.4) 

are derived. These are the analogues of equations (2.11). [Note that with 
h = v = 0, only (5.4) is seen to be different in sign relative to (2.11) because 
it is only in the variation with respect to A n that the sign differences between 
(5.1) and (2.1) can play a role.] 

Two additional equations are required for the new functions A and v, 
and these were obtained from the Einstein gravitational field equations 
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involving the T O and T~ components of  the energy-momentum tensor: 

A'=(1- -eA) /x+(o-2x /e2) (y2z2eA-"+y '2+y2eA+z '2e-~)  (5.5) 

u ' = ( e X - 1 ) / x + ( o 2 x / e 2 ) ( y 2 z 2 e A - ~ ' + y ' 2 - y 2 e a - z ' 2 e  -~) (5.6) 

Equations (5.3)-(5.6) were integrated numerically with various initial values 
for y(0) = a and z(0) = b, where A, u, A', v', y', z '  were set equal to zero at 
x = 0. [It  should be noted that v(0) was taken to vanish for convenience.This 
means that v(oo)~ 0, so that we have a rescaling of  time.] The parameter  
ratio o'2/e 2 was then adjusted to minimize y2 as the exterior of  the particle 
is approached.  This has the effect of localizing the particle sharply, in 
analogy to the localization of  the probabili ty density ~ in quantum 
mechanics. As expected, the improvement  in the localization is correlated 
with the increasing convergence to the Reissner-Nordstr6m metric outside 
of  the particle, i.e., in the direction of perfect electrovacuum. It is also 
understandable physically that, as was found, this trend is accompanied by 
increasing gravitational field intensity: strong gravitational fields are more 
effective in concentrating the particle. 

Data for a model with a = 3, b = 40 are now described. The maximum 
concentration was found for 0-2/e2 = 0.538268624309411. The most intense 
gravitational field gradients (A ~ ,  v~  ) = (-2.16 x 105, 3.54 • 105) occurred 
at x =  1.54614 and the maximum electric field gradient z ~  =2 . 07x  1013 
occurred nearby at x = 1.54628. At x = 1.55130, one is exterior to the particle 
since u ' = - ) t '  (=3.86271 • 102), as expected for the Reissner-NordstrSm 
metric [see (5.7) below] for arbitrary scaling of  the time coordinate. At 
x =  1.546, y 2  10-4, whereas at x-~ 1.6, y 2  10-8, and by x - 3 ,  y2=  10-1o. 
Thus, the particle is highly concentrated. The choice of  smaller values for 
0"2/82 leads to a more diffuse particle with smaller field gradients. Note 
that in this paper, we used geometrical units in which c = G = 1. Had we 
not taken G = 1, then the parameter  o'2/e2 in (5.5) and (5.6) would have 
appeared as Go-Z~ e 2, and it would have displayed its character more trans- 
parently as being related to the strength of the gravitational interaction. 

For arbitrary e and m values, the Reissner-Nordstr6m metric is (5.2) 
with 

e -~ = 1 - 2 r e ~ x +  eZ/x 2 = const �9 e ~ (5.7) 

using dimensionless units. With the data values a =3.45798 and A '=  
-3.87655 x 10 -2 at x =9.737814, we find, using (5.7), that e = 1.546163 and 
m = 1.546148. The near equality of  these values shows that the metric is 
very close to the critically charged form (3.1) (now with r replaced by x), 
and it is clear that the huge field gradients, in turn, should occur in the 
vicinity of  x = m, as above. 
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It is of  considerable interest that in all the cases studied of this model 
and in all the cases studied in other models, such as with the addition 
of a quartic g term, with other coupled scalars, etc., the same behavior 
was witnessed: the critically charged Reissner-Nordst6m solution was 
approached as gravity was made to assume a dominant  role. 

In other situations where gravity played a subsidiary but still detectable 
role, e / m  was always found to be of  the order unity or less. When e / m  
was taken to have a large value, as, for example, in the case of  an electron, 
it was always found that the effect of  gravitation was negligible. Thus, the 
evidence suggests that gravitation does not play a significant role in the 
structure of  the elementary particles with which we are familiar. 

6. D I S C U S S I O N  

The idea of describing an elementary particle as a singularity-free 
concentration of fields is very attractive. One wishes to avoid a singularity 
since, at a singular point, the field equations break down, and the physical 
laws which  they describe do not hold. However, the structure of  such a 
particle presents a challenge: how can one have a particle in which the 
various volume elements attract one another and yet have a net positive 
mass? One answer was provided earlier: the particle should consist of  a 
core of  negative mass surrounded by a region with sufficient positive mass. 
There may be other means of achieving this end, but at least in the case of  
the electron, as discussed in Section 3, this is a necessity. In any event, the 
fields should provide both attraction and repulsion, since with only one of  
these present, the particle will either collapse or explode. 

One can think of gravitation as providing the required attractive force 
between positive-mass volume elements. However, as was pointed out in 
Section 3, gravitation cannot play an important  role in the structure of  the 
electron in view of  the large e / m  ratio ( -  1021). In the case of  the electron, 
the situation is aggravated by the fact that the radius must be small 
( ~ 1 0  -16 cm). Moreover, if one regards the electron as one member  of  the 
lepton family, and one wishes to incorporate the other leptons, /z and r, 
as well in the same framework, one is faced with stringent requirements. 
In the present work, these are satisfied by a model which involves the 
presence of three scalar fields, one charged and two neutral. In particular, 
it gives an electron size of  the order of  10 -16 cm, which is of  the order of  
the present experimental upper  limit. It is conceivable that this is the actual 
size of the electron and not just the upper  limit. 

It was stressed earlier that if  one ass!gns a significant role to gravitation 
in the structure of the charged particle, one is led to a situation in which 
the charge is of  the order of  magnitude of, or less than, the mass. This has 
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no relation to the elementary charged particles, having very large e /m ratios, 
with which we are familiar. However, it is still conceivable that some of 
the particles which we now regard as "elementary" are actually composed 
of  more fundamental massive particles with nearly equal charge and mass, 
which do involve gravitation in their structure. 

The stability analysis for our rather complicated Lagrangian is currently 
in progress and will be the subject of a future paper. 
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